Posts

Transformer and Auto transformer ( Electrical Engineering )



Topic includes

- Transformer
- Principle, construction
- Shell and Core type
- About transformer
- Ideal and real transformer
- Leakage flux and equivalent circuit
- Transformer Emf eq.
- Polarity, effect of frequency
- Operation
- Losses 
- Application
- Instrument transformer
- Autotransformer
- It's operation
- Advantage and disadvantage
- About, limitations  and application


Transformer


It is a static device which is used to transfer power at different voltage but at same frequency .

Principle

It works on Principle of mutual induction.

Constitution

It is of core type or shell type .

Core type 

In core type the core is made up of L type stampings which are butted against each other and stacked differently so as to avoid continuous joints.
The core is made up of silicon steel . Silicon steel is used to reduce hysteresis loss and laminated stampings reduce Eddy current losses.

Shell type

In this, the core is made up of E and I type of stampings which are butted against each other and stacked differently so as to avoid continuous joints.
The core is made up of silicon steel stampings. Silicon steel stampings is used to reduce hysteresis and laminated stampings reduce Eddy current losses.

About transformer

A transformer is a passive electrical device that transfers electrical energy from one electrical circuit to another, or multiple circuits. A varying current in any one coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force across any other coils wound around the same core. Electrical energy can be transferred between separate coils without a metallic (conductive) connection between the two circuits. Faraday's law of induction, discovered in 1831, describes the induced voltage effect in any coil due to a changing magnetic flux encircled by the coil.

Transformers are most commonly used for increasing low AC voltages at high current (a step-up transformer) or decreasing high AC voltages at low current (a step-down transformer) in electric power applications, and for coupling the stages of signal processing circuits. Transformers can also be used for isolation, where the voltage in equals the voltage out, with separate coils not electrically bonded to one another.

Ideal transformer

No loss transformer.
An ideal transformer is a theoretical linear transformer that is lossless and perfectly coupled. Perfect coupling implies infinitely high core magnetic permeability and winding inductances and zero net magnetomotive force.

A varying current in the transformer's primary winding attempts to create a varying magnetic flux in the transformer core, which is also encircled by the secondary winding. This varying flux at the secondary winding induces a varying electromotive force (EMF, voltage) in the secondary winding due to electromagnetic induction and the secondary current so produced creates a flux equal and opposite to that produced by the primary winding, in accordance with Lenz's law.
The windings are wound around a core of infinitely high magnetic permeability so that all of the magnetic flux passes through both the primary and secondary windings. With a voltage source connected to the primary winding and a load connected to the secondary winding, the transformer currents flow in the indicated directions and the core magnetomotive force cancels to zero.

Real transformer


The ideal transformer model neglects the following basic linear aspects of real transformers:
(a) Core losses, collectively called magnetizing current losses, consisting of
Hysteresis losses due to nonlinear magnetic effects in the transformer core, and
Eddy current losses due to joule heating in the core that are proportional to the square of the transformer's applied voltage.

(b) Unlike the ideal model, the windings in a real transformer have non-zero resistances and inductances associated with:

Joule losses due to resistance in the primary and secondary windings
Leakage flux that escapes from the core and passes through one winding only resulting in primary and secondary reactive impedance.

(c) similar to an inductor, parasitic capacitance and self-resonance phenomenon due to the electric field distribution. Three kinds of parasitic capacitance are usually considered and the closed-loop equations are provided [10]

Capacitance between adjacent turns in any one layer;
Capacitance between adjacent layers;
Capacitance between the core and the layer(s) adjacent to the core.

Leakage flux


The ideal transformer model assumes that all flux generated by the primary winding links all the turns of every winding, including itself. In practice, some flux traverses paths that take it outside the windings.Such flux is termed leakage flux, and results in leakage inductance in series with the mutually coupled transformer windings. Leakage flux results in energy being alternately stored in and discharged from the magnetic fields with each cycle of the power supply. It is not directly a power loss, but results in inferior voltage regulation, causing the secondary voltage not to be directly proportional to the primary voltage, particularly under heavy load. Transformers are therefore normally designed to have very low leakage inductance.

In some applications increased leakage is desired, and long magnetic paths, air gaps, or magnetic bypass shunts may deliberately be introduced in a transformer design to limit the short-circuit current it will supply. Leaky transformers may be used to supply loads that exhibit negative resistance, such as electric arcs, mercury- and sodium- vapor lamps and neon signs or for safely handling loads that become periodically short-circuited such as electric arc welders.

Equivalent circuit


Winding joule losses and leakage reactances are represented by the following series loop impedances of the model:

Primary winding: RP, XP
Secondary winding: RS, XS.
In normal course of circuit equivalence transformation, RS and XS are in practice usually referred to the primary side by multiplying these impedances by the turns ratio squared
Core loss and reactance is represented by the following shunt leg impedances of the model:

Core or iron losses: RC
Magnetizing reactance: XM.
RC and XM are collectively termed the magnetizing branch of the model.

Core losses are caused mostly by hysteresis and eddy current effects in the core and are proportional to the square of the core flux for operation at a given frequency.

Transformer emf equation


If the flux in the core is purely sinusoidal, the relationship for either winding between its rms voltage Erms of the winding, and the supply frequency f, number of turns N, core cross-sectional area a in m2 and peak magnetic flux density Bpeak in Wb/m2 or T (tesla) is given by the universal.

Polarity


A dot convention is often used in transformer circuit diagrams, nameplates or terminal markings to define the relative polarity of transformer windings. Positively increasing instantaneous current entering the primary winding's ‘dot’ end induces positive polarity voltage exiting the secondary winding's ‘dot’ end. Three-phase transformers used in electric power systems will have a nameplate that indicate the phase relationships between their terminals. This may be in the form of a phasor diagram, or using an alpha-numeric code to show the type of internal connection (wye or delta) for each winding.

Effect of frequency


The EMF of a transformer at a given flux increases with frequency. By operating at higher frequencies, transformers can be physically more compact because a given core is able to transfer more power without reaching saturation and fewer turns are needed to achieve the same impedance. However, properties such as core loss and conductor skin effect also increase with frequency. Aircraft and military equipment employ 400 Hz power supplies which reduce core and winding weight.Conversely, frequencies used for some railway electrification systems were much lower (e.g. 16.7 Hz and 25 Hz) than normal utility frequencies (50–60 Hz) for historical reasons concerned mainly with the limitations of early electric traction motors. Consequently, the transformers used to step-down the high overhead line voltages were much larger and heavier for the same power rating than those required for the higher frequencies.

Operation

Operation of a transformer at its designed voltage but at a higher frequency than intended will lead to reduced magnetizing current. At a lower frequency, the magnetizing current will increase. Operation of a large transformer at other than its design frequency may require assessment of voltages, losses, and cooling to establish if safe operation is practical. Transformers may require protective relays to protect the transformer from overvoltage at higher than rated frequency.

One example is in traction transformers used for electric multiple unit and high-speed train service operating across regions with different electrical standards. The converter equipment and traction transformers have to accommodate different input frequencies and voltage (ranging from as high as 50 Hz down to 16.7 Hz and rated up to 25 kV).

Energy losses


Transformer energy losses are dominated by winding and core losses. Transformers' efficiency tends to improve with increasing transformer capacity. The efficiency of typical distribution transformers is between about 98 and 99 percent.

As transformer losses vary with load, it is often useful to tabulate no-load loss, full-load loss, half-load loss, and so on. Hysteresis and eddy current losses are constant at all load levels and dominate at no load, while winding loss increases as load increases. The no-load loss can be significant, so that even an idle transformer constitutes a drain on the electrical supply. Designing energy efficient transformers for lower loss requires a larger core, good-quality silicon steel, or even amorphous steel for the core and thicker wire, increasing initial cost. The choice of construction represents a trade-off between initial cost and operating cost.

Transformer losses arise from:


Winding joule losses

Current flowing through a winding's conductor causes joule heating due to the resistance of the wire. As frequency increases, skin effect and proximity effect causes the winding's resistance and, hence, losses to increase.

Core losses
Hysteresis losses

Each time the magnetic field is reversed, a small amount of energy is lost due to hysteresis within the core, caused by motion of the magnetic domains within the steel.

Eddy currents are induced in the conductive metal transformer core by the changing magnetic field, and this current flowing through the resistance of the iron dissipates energy as heat in the core. The eddy current loss is a complex function of the square of supply frequency and inverse square of the material thickness.[20] Eddy current losses can be reduced by making the core of a stack of laminations (thin plates) electrically insulated from each other, rather than a solid block; all transformers operating at low frequencies use laminated or similar cores.

Magnetostriction related transformer hum
Magnetic flux in a ferromagnetic material, such as the core, causes it to physically expand and contract slightly with each cycle of the magnetic field, an effect known as magnetostriction, the frictional energy of which produces an audible noise known as mains hum or "transformer hum". This transformer hum is especially objectionable in transformers supplied at power frequencies and in high-frequency flyback transformers associated with television CRTs.

Stray losses

Leakage inductance is by itself largely lossless, since energy supplied to its magnetic fields is returned to the supply with the next half-cycle. However, any leakage flux that intercepts nearby conductive materials such as the transformer's support structure will give rise to eddy currents and be converted to heat.
Radiative
There are also radiative losses due to the oscillating magnetic field but these are usually small.
Mechanical vibration and audible noise transmission
In addition to magnetostriction, the alternating magnetic field causes fluctuating forces between the primary and secondary windings. This energy incites vibration transmission in interconnected metalwork, thus amplifying audible transformer hum.

Construction about transformer



Cores


Closed-core transformers are constructed in 'core form' or 'shell form'. When windings surround the core, the transformer is core form; when windings are surrounded by the core, the transformer is shell form. Shell form design may be more prevalent than core form design for distribution transformer applications due to the relative ease in stacking the core around winding coils.Core form design tends to, as a general rule, be more economical, and therefore more prevalent, than shell form design for high voltage power transformer applications at the lower end of their voltage and power rating ranges (less than or equal to, nominally, 230 kV or 75 MVA). At higher voltage and power ratings, shell form transformers tend to be more prevalent.Shell form design tends to be preferred for extra-high voltage and higher MVA applications because, though more labor-intensive to manufacture, shell form transformers are characterized as having inherently better kVA-to-weight ratio, better short-circuit strength characteristics and higher immunity to transit damage.

Laminated steel cores


Transformers for use at power or audio frequencies typically have cores made of high permeability silicon steel.The steel has a permeability many times that of free space and the core thus serves to greatly reduce the magnetizing current and confine the flux to a path which closely couples the windings.Early transformer developers soon realized that cores constructed from solid iron resulted in prohibitive eddy current losses, and their designs mitigated this effect with cores consisting of bundles of insulated iron wires.Later designs constructed the core by stacking layers of thin steel laminations, a principle that has remained in use. Each lamination is insulated from its neighbors by a thin non-conducting layer of insulation.The transformer universal EMF equation can be used to calculate the core cross-sectional area for a preferred level of magnetic flux.


Application


Various specific electrical application designs require a variety of transformer types. Although they all share the basic characteristic transformer principles, they are customized in construction or electrical properties for certain installation requirements or circuit conditions.

In electric power transmission, transformers allow transmission of electric power at high voltages, which reduces the loss due to heating of the wires. This allows generating plants to be located economically at a distance from electrical consumers.All but a tiny fraction of the world's electrical power has passed through a series of transformers by the time it reaches the consumer.

In many electronic devices, a transformer is used to convert voltage from the distribution wiring to convenient values for the circuit requirements, either directly at the power line frequency or through a switch mode power supply.

Signal and audio transformers are used to couple stages of amplifiers and to match devices such as microphones and record players to the input of amplifiers. Audio transformers allowed telephone circuits to carry on a two-way conversation over a single pair of wires. A balun transformer converts a signal that is referenced to ground to a signal that has balanced voltages to ground, such as between external cables and internal circuits.


Instrument transformer


Potential transformer

It is also called step down transformer which is used to step down the voltage high input voltage to low output which can be measured using low range voltmeter as shown in fig.
The basic principle of this transformer is same  as that ordinary transformer.


Current transformer

It is also called  step up transformer which step down the current which can be measured using low range ammeter . The primary winding has less turn and connected in series with line and ammeter is connected across secondary of the transformer. 


Auto transformer 


An autotransformer is an electrical transformer with only one winding. The "auto" (Greek for "self") prefix refers to the single coil acting alone, not to any kind of automatic mechanism. In an autotransformer, portions of the same winding act as both the primary winding and secondary winding sides of the transformer. In contrast, an ordinary transformer has separate primary and secondary windings which are not connected to each other.


Operation


The autotransformer winding has at least three taps where electrical connections are made. Since part of the winding does "double duty".


Advantages and disadvantages


Autotransformers have the advantages of often being smaller, lighter, and cheaper than typical dual-winding transformers, but the disadvantage of not providing electrical isolation between primary and secondary circuits.
Advantages of autotransformers include lower leakage reactance, lower losses, lower excitation current, and increased VA rating for a given size and mass.

About 

An autotransformer has a single winding with two end terminals and one or more terminals at intermediate tap points. It is a transformer in which the primary and secondary coils have part of their turns in common. The primary voltage is applied across two of the terminals, and the secondary voltage taken from two terminals, almost always having one terminal in common with the primary voltage.Since the volts-per-turn is the same in both windings, each develops a voltage in proportion to its number of turns. In an autotransformer, part of the current flows directly from the input to the output, and only part is transferred inductively, allowing a smaller, lighter, cheaper core to be used as well as requiring only a single winding.

Limitation with applications 


An autotransformer does not provide electrical isolation between its windings as an ordinary transformer does; if the neutral side of the input is not at ground voltage, the neutral side of the output will not be either. A failure of the isolation of the windings of an autotransformer can result in full input voltage applied to the output. Also, a break in the part of the winding that is used as both primary and secondary will result in the transformer acting as an inductor in series with the load (which under light load conditions may result in near full input voltage being applied to the output). These are important safety considerations when deciding to use an autotransformer in a given application.

Because it requires both fewer windings and a smaller core, an autotransformer for power applications is typically lighter and less costly than a two-winding transformer, up to a voltage ratio of about 3:1; beyond that range, a two-winding transformer is usually more economical.


In three phase power transmission applications, autotransformers have the limitations of not suppressing harmonic currents and as acting as another source of ground fault currents. A large three-phase autotransformer may have a "buried" delta winding, not connected to the outside of the tank, to absorb some harmonic currents.

Autotransformers are frequently used in power applications to interconnect systems operating at different voltage classes, for example 132 kV to 66 kV for transmission. Another application in industry is to adapt machinery built (for example) for 480 V supplies to operate on a 600 V supply. They are also often used for providing conversions between the two common domestic mains voltage bands in the world (100 V–130 V and 200 V–250 V). The links between the UK 400 kV and 275 kV 'Super Grid' networks are normally three phase autotransformers with taps at the common neutral end.

Auto transformer is used as starter for induction motors.
It is also used as variable voltage source.

On long rural power distribution lines, special autotransformers with automatic tap-changing equipment are inserted as voltage regulators, so that customers at the far end of the line receive the same average voltage as those closer to the source. The variable ratio of the autotransformer compensates for the voltage drop along the line.

Another form

A special form of autotransformer called a zig zag is used to provide grounding on three-phase systems that otherwise have no connection to ground.






Comments

  1. Servokon Systems is a one of the leading name in the field of Transformer Manufacturers in India. We are a manufacturers & suppliers of Transformer pan India. We are using a best quality of material and latest technology to manufacturing our products. A Transformer is an electrical device that is used for exchanging the current or voltage . This can start from the electric circuit and then to next by the method known as electromagnetic enlistment. If you want to buy a Transformer then contact us or visit our website.

    ReplyDelete

  2. SNB Enterprises is the Most Famous Stainless Steel Coil Manufacturerin India. The offered product finds a vast application in chemical, petroleum and electronics industries. Made in accordance with the industry set standards at the vendor’s end, the whole range of high quality stainless steel coils offered by us is certain to be of superlative quality. Our offered product is customized as per client's requirements.

    ReplyDelete
  3. Thank you for providing such a thorough guide to transformers. Transmission and distribution, power generation, audio systems, and electronic equipment are all applications for transformers. S.B. Electrotech manufactures transformer test bench that can help you deal with power quality issues.

    ReplyDelete

Post a Comment